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Abbreviations: DAPTA, d-ala1-peptide t-amide; VIP, 
vasoactive intestinal peptide; PACAP, pituitary adenylate cyclase-
activating polypeptide; GHRH, growth hormone releasing hormone; 
HIV, human immunodeficiency virus; MMSE, mini-mental state 
examination; FDG, fluorodeoxyglucose; DBPC, double-blind 
placenbo controlled; HAART, highly active antiretroviral therapy

Introduction
We have exploited the HIV virobiome, specifically the envelope 

protein gp120, to identify highly potent receptor-active peptides that 
act as functional antagonists of multiple chemokine receptors. This 
was accomplished by searching the gp120 sequence for small local 
homologies to known signaling peptides, such as neuropeptides of the 
VIP/PACAP/GHRH family.1,3˗5

We identified a discreet octapeptide domain (peptide T site) near 
the V2 stem of gp1201 and related peptides derived from these se-
quences that preferentially block infection of R5-tropic HIV isola-
tes.6˗8 Our initial studies used an early passage patient isolate, later 
shown to have an R5/X4 (dual-tropic) receptor phenotype, although 
none of the chemokine receptors, nor the significance of chemokine 
receptor utilization, were known at the time of this work (circa 1985). 
The predominant antiviral effect for R5 vs X4 HIV isolates explains 
the early controversy related to lack of antiviral effects with X4 lab 
adapted isolates.9

While peptide T was the first receptor targeted anti-viral for HIV 
(this class came to be called “entry-inhibitors”), as the AIDS epidemic 
expanded in the mid-1980’s it became evident that the virus, while 
establishing infection in the CNS, did not replicate in neurons. Never-
theless, profound cognitive and motor deficits were being reported, 
adding to the great stigma and suffering this disease carried at the time. 
In our initial reports1 we noted a cortical distribution of gp120 binding 
to receptors in primate brain and hypothesized that gp120 killing of 
susceptible neurons would explain the observed patient cognitive de-
ficits. We proposed that peptide T, by blocking gp120 binding,1 later 
shown to be at CCR5,8 would be efficacious in preventing neuronal 
loss in HIV infection, now known to occur very early after infection.

Benefits in neuroinflammation and neurodegenera-
tion

Initial studies that showed peptide T, and its degradation resistant 
analog D-ala1-peptide T-amide (DAPTA), was protective to the neu-
rotoxic effects of gp120 in neuronal cultures,10˗13 in part by releasing 
protective chemokines.14 The neuro-protective effects of DAPTA were 
also shown in animals treated with gp120, where the loss of synapses 
and dendritic arbor, along with behavioral delays, were reversed.15 
The neurotoxic effects of gp120 were therefore shown to be a cause 
of cortical neuronal loss and dendritic pathologies16,17 in neuro-AIDS. 
The mechanisms of gp120 neurotoxicity were gradually revealed by 
us and others to be indirect, and related to activation of microglia by 
gp120,18,19 effects which are blocked by DAPTA.20 Activated micro-
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Abstract

The identification of biologically significant, receptor-targeting epitopes from the 
“virobiome”, the diverse population of viruses which engage the host immune system, 
especially those determinants which may control host immunity or be viral entry receptor 
binding sites, is an important goal for the development of anti-viral drugs, vaccines, 
and immunomodifying therapies. We1 and others2 have observed that numerous viruses, 
including members of the herpesvirus, poxvirus, and lentivirus families encode peptides 
that block innate immunity, presumably to help them overcome immune surveillance. A 
virus, especially a lentivirus, which is well adapted to exist in a nuanced balance within 
the complete, natural, and physiological host immune system, would be able, over millions 
of iterations (viral replication cycles), to perfect an escape from immune surveillance by 
modulating the entire innate immune network. Identifying those innate immune modifying 
peptide epitopes provides a rational basis for drug development. Contrast this to a typical 
“pharma” screening approach that a priori seeks to identify a “pure” or specific receptor 
target, to then be tested in artificial systems, yielding few hits, which typically are of low 
potency. These types of screens are most suited for detecting either agonist or antagonist 
activity. However, a more desirable pharmacologic feature, which the virobiome might 
provide, is partial or mixed agonist/antagonist activity, as this is most suited to provide a 
balanced modulation of immunity, and avoids substantial suppression of what are certainly 
useful host immune function(s). Small peptides derived from the HIV envelope protein 
have been identified that block HIV entry at chemokine receptors, protect neurons, and 
which antagonize cytokine, chemokine, and TLR/MyD88 inflammatory pathways. This 
has allowed creation of orally active, potent, peptides to provide treatments in diverse 
conditions with an underlying inflammatory pathogenesis such as psoriasis, Neuro-AIDS, 
neuropathies, and Alzheimer’s disease (AD), to name a few examples.
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glia and astrocytes are now well appreciated to be mediators in diver-
se neuropathologies, which peptide T analogs can treat.

Although the anti-viral actions of these peptides was the initial 
subject of investigation, it gradually became clear that the peptide T 
family of peptides had useful immunomodulating14,21˗24 and neuronal 
sparing14,25 effects beyond HIV that could be exploited therapeutically, 
especially in neurodegenerative conditions with an inflammatory pa-
thogenesis. DAPTA lowered M1 cytokines IL-1, Il-6, IL-8, IL-23, 
TNFα, and enhanced M2 cytokines such as IL-4 and IL-10.26 Some 
examples of possible DAPTA treatment benefits include Alzheimer’s 
disease.20,25 neuropathies of diverse origin,27˗29 cancer pain,30 excito-
toxicity31 and stroke/cerebral ischemia.32 Clinical benefits have been 
shown for neuro-AIDS (below), suppression of growth hormone,5 a 
cause of developmental delays in pediatric HIV, which DAPTA has 
restored,33 as well as in non-HIV related skin conditions like psoria-
sis.34,35

Clinical trial results in neuro-aids

Peptide T, or more correctly DAPTA, entered human clinical trials 
for neuro-AIDS endpoints in 1986. Improvements in MRI brain scans 
and cognitive testing were subsequently reported.36,37 The cognitive 
benefits in neuro-AIDS were confirmed in further controlled testing, 
which showed significant group (active vs. placebo, p=.003) and time 
(p=.001) effects,38 absent any toxicities. A three-site DBPC trial in 
215 randomized subjects of intra-nasal spray DAPTA (2 mgs, TID) 
was conducted in the early 1990’s. The main endpoint was change in 
global cognitive score at 6 months on a battery of 23 tests. While no 
significant difference was found between the DAPTA and the placebo 
group on the global cognitive score, 2 of 7 domains, working memory 
(p.04) and speed of information processing (p=.008), did show impro-
vement in the DAPTA group. A treatment effect was also reported for 
patients whose CD4 cell numbers were above 200 cells/µL at baseline 
(non-AIDS).

Overall, this cohort was minimally cognitively impaired 
(MMSE=28). However, among those with greater and clinically sig-
nificant cognitive deficit >0.5 on the global Z-score, a pre-planned 
sub-group analysis showed that DAPTA was associated with impro-
ved performance while deterioration was more common in the pla-
cebo group (P=.02).39 Although anti-viral measurements were not a 
primary endpoint in this trial, those data were reported and showed 
that DAPTA reduced the viral load (-0.54 log, p<.03).40 The finding 
of anti-viral effect in this study is remarkable as the patients were not 
enrolled based on viral load, there was no dose optimization for anti-
-viral effect, their R5 or X4 viral phenotypes which would determine 
sensitivity to an anti-viral effect was unknown, and since the study 
was done in the pre-HAART era, DAPTA was essentially tested as 
monotherapy.

An in-hospital phase 2 study of DAPTA at 15 or 1.5mg/day for 4 
weeks in nine IV drug users with early AIDS dementia also showed 
improved neurocognitive performance, at the higher dose compared 
with the lower dose or the placebo (P<.05).41 In a further study, bene-
fits on functional brain imaging were reported in a 39-year old man 
with AIDS Dementia Complex who received 12 weeks of intranasal 
DAPTA (0.4mg TID, 1.2mgs per day). This study demonstrated that 
34 of 35 brain regions having low FDG activity showed remission af-
ter therapy,42 consistent with the MRI and cognitive benefits identified 
in the phase 1 and 2 studies. (op.cit., above).

Orally active peptides

While DAPTA is substantially protected from degradation in plas-
ma it is rapidly digested in the stomach.43 Furthermore, its clinical use 

has primarily been by nasal spray, which requires long term storage 
of a liquid drug product. DAPTA has been shown to lose activity by 
aggregation upon storage. Aggregation of the drug product was a con-
cern in the DBPC trial39 as stored product was used for the several 
years it took to complete the study and gelling of study medication 
was reported by the patients. This has limited DAPTA further clini-
cal development. To overcome this significant obstacle, we created an 
analog of DAPTA (RAP-103) that is fully protected to degradation, 
and retains picomolar potency.

A proof-of-concept study in rats showed that oral administration of 
RAP-103 (0.05-1mg/kg) for 7 days fully prevents mechanical allody-
nia and inhibits the development of thermal hyperalgesia after partial 
ligation of the sciatic nerve in rats.27 In this study, we further showed 
that DAPTA and RAP-103 blocked both CCR2 as well as the closely 
related chemokine receptor CCR5. Moreover, RAP-103 could reduce 
spinal microglial activation and monocyte infiltration, and inhibit the 
inflammatory cytokine responses evoked by peripheral nerve injury, 
the cause of neuropathic pain.

Our findings suggest that targeting CCR2/CCR5 should provide 
greater efficacy than targeting CCR2 or CCR5 alone, and that the 
dual CCR2/CCR5 functional antagonist RAP-103 has the potential 
for clinical use in neuropathic and other pain conditions. Because this 
analog shares multiple DAPTA mechanisms to reduce microglial acti-
vation, shift the cytokine balance, protect neurons and spare dendritic 
arbor, it is a prime candidate for further clinical development in the 
multiple neuroinflammatory conditions already discussed, for which 
benefits in pre-clinical animal testing models have been shown, as 
noted in the many citations of this review.

Conclusion
Virobiome derived peptides have led to creation of an entirely 

new and novel class of innate-immune modulating peptides with pro-
ven human benefits in neuro-AIDS that may be useful in many other 
neuroinflammatory diseases with few, if any, effective treatments. Of 
particular interest are findings that DAPTA prevented neuronal losses 
and protected synapses in neuro-AIDS and aging rodent models, and 
blocked microglial and astrocyte activation in brain, results highly 
suggestive of a beneficial effect in Alzheimer’s disease and other neu-
rodegenerative conditions. Benefits in animal models of AD, as well 
as ischemic stroke and neuropathic pain result in part from DAPTA’s 
action to shift the cytokine profile from an M1 (inflammatory) to an 
M2 (repair) response, actions which have particular utility in brain 
injuries and neurodegeneration from diverse causes.

Virobiome-derived peptides like DAPTA, have been shown in 
multiple human studies to be safe and efficacious by blunting inna-
te immune cytokines and chemokines. Next-generation orally active 
peptides have shown proof-of-concept benefits in neuropathic pain 
models, via effects at clinically validated receptor targets. Virobiome-
-derived oral peptides can therefore provide significant treatment and 
patient benefits over current antibody-based pharmaceuticals which 
seek to reduce inflammatory cytokines including IL-1, IL-6, IL-8, IL-
23, and TNFα. Their small size allows rapid tissue distribution and 
entry into the brain, and peptides in general have an excellent safety 
profile, compared to many small molecule therapeutics.
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