Submit manuscript...
International Journal of
eISSN: 2576-4454

Hydrology

Mini Review Volume 2 Issue 3

Geostatistics inversion of electric field, waveform synthetic data, with synthetic a priori data of well electrical permittivity properties to GPR, using the scaled conjugate gradient

Julio C Morfe,1 Ana I Bermudez,1 Herbert Rendon2

1GrupoLi, Medellin, Colombia
2Funvisis, Caracas, Venezuela

Correspondence: Julio C Morfe, GrupoLi, Medellín, Colombia

Received: May 21, 2018 | Published: June 21, 2018

Citation: Julio CM, Ana IB, Rendon H. Geostatistics inversion of electric field, waveform synthetic data, with synthetic a priori data of well electrical permittivity properties to GPR, using the scaled conjugate gradient. Int J Hydro. 2018;2(3):388-394. DOI: 10.15406/ijh.2018.02.00101

Download PDF

Abstract

 Electromagnetic wave data are simulated in representation of waves registered by a Ground Penetrating Radar (GPR), post-stacked and migrated, by convolving the synthetic electric permittivity of a model of parallel layers of soil and a ricker wavelet. Data well information of synthetic electrical permittivity is perturbed close to the original synthetic data on electric permittivity properties associated to a model conformed with parallel layers. We define a priori probability density function on the space of models, then use Bayes theorem to combine this probability with the data misfit function into a final a posteriori probability density reflecting both data fit and model reasonableness, we incorporate the covariance matrix of the well data and synthetic data. The posteriori probability is optimized via a nonlinear scaled conjugate gradient. The input data of the scaled conjugate gradient algorithm are the well permittivity electric data, the Ground Penetrating Radar source wavelet (Ricker) and the synthetic electromagnetic wave data that represents the waves recorded by a GPR post-stacked and migrated are contaminated with 5% noise and without noise. The SCG algorithm is initialized to an average constant value of the well data.

The results obtained from the inversion are very close to the initial real synthetic values of the electric permittivity model of parallel layers of the soil, that we wanted to recover, via this proposed inversion technique.

Keywords: simulation, electromagnetics wave propagation, electric permittivity

Introduction

Geophysical data inversion deals with the problem of a quantitative inference on Earth model parameters from data observation. One sound approach to this problem is what is called the Bayesian inference method, where a priori information on the Earth parameters is known in terms of its probability distribution function sand new data is sought to improve the knowledge of Earth Model parameters in terms of a better constrained a posteriori probability distribution functions of those very same parameters. In this work we apply the Bayesian approach to electric permittivity data where we believe that a priori information can reasonably be derived from in situ petrophysical/field measurements. Therefore, due to observations are subject to uncertainty, these inferences are inherently probabilistic. Also, due to the epistemic error associated to uncertainties in the model parameters, this call for a framework which includes both a model for the random noise associated to the capturing of the data and the one associated to the lack of certain knowledge on the fabrics on the Earth media. Therefore, our task is to find an improved Earth model that fits new collected data, but also complies with our prejudice of what it should be a reasonable model, avoiding such “truly” unrealistic models that violate our a priori prejudices, other data, or theoretical considerations. One strategy for eliminating such unreasonable models is to define an a priori probability density on the space of models, then use Bayes theorem to combine this probability with the data misfit function into a final a posteriori probability density function that reflects both the data and a reasonable model.

Reflection of electromagnetic waveform

Formulation of the problem

In our procedure, we perform a Bayesian inverse calculation to estimate relative electric permittivity. The Bayesian solution of the problem is the a posteriori probability density function on model space, which we denote by σ( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHdpWCdaqadaWdaeaapeGabmOwa8aagaWcaaWdbiaawIca caGLPaaaaaa@3B20@ . This probability density function is the convolution product of two terms, the likelihood function L( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbWaaeWaa8aabaWdbiqadQfapaGbaSaaa8qacaGLOaGa ayzkaaaaaa@3A2E@ , which defines what is meant for a model to fit the data, and the second term, the a priori probability ρ( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCdaqadaWdaeaapeGabmOwa8aagaWcaaWdbiaawIca caGLPaaaaaa@3B1D@ , incorporates information about the subsurface that is independent of the newly observed data from which the interferences are being made. In the event that the Gaussian model is an acceptable approximation for all uncertainties of the problem, the likelihood function is given by

L( Z )exp( 1 2 { d obs g ( Z ) } T C dat 1 { d obs g( Z ) } )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbWaaeWaa8aabaWdbiqadQfapaGbaSaaa8qacaGLOaGa ayzkaaGaeyyhIuRaaGPaVlaadwgacaWG4bGaamiCamaabmaapaqaa8 qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaadaGa daWdaeaapeGaamizaSWdamaaBaaajuaGbaqcLbmapeGaam4Baiaadk gacaWGZbaajuaGpaqabaWdbiabgkHiTiaadEgacaGGGcWaaeWaa8aa baWdbiqadQfapaGbaSaaa8qacaGLOaGaayzkaaaacaGL7bGaayzFaa WdamaaCaaabeqaa8qacaWGubaaaiaadoeal8aadaqhaaqcfayaaKqz adWdbiaadsgacaWGHbGaamiDaaqcfa4daeaajugWa8qacqGHsislca aIXaaaaKqbaoaacmaapaqaa8qacaWGKbWcpaWaaSbaaKqbagaajugW a8qacaWGVbGaamOyaiaadohaaKqba+aabeaapeGaeyOeI0Iaam4zam aabmaapaqaa8qaceWGAbWdayaalaaapeGaayjkaiaawMcaaaGaay5E aiaaw2haaaGaayjkaiaawMcaaiaacckaaaa@6C1B@ (1.a)

ρ( Z )=exp( 1 2 {   Z Z prior } T C mod 1 { Z Z prior } ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCdaqadaWdaeaapeGabmOwa8aagaWcaaWdbiaawIca caGLPaaacqGH9aqpcaaMc8UaamyzaiaadIhacaWGWbWaaeWaa8aaba WdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaamaa cmaapaqaa8qacaGGGcGabmOwa8aagaWca8qacqGHsislceWGAbWday aalaWcdaWgaaqcfayaaKqzadWdbiaadchacaWGYbGaamyAaiaad+ga caWGYbaajuaGpaqabaaapeGaay5Eaiaaw2haa8aadaahaaqabeaape GaamivaaaajugWaiaadoeal8aadaqhaaqcfayaaKqzadWdbiaad2ga caWGVbGaamizaaqcfa4daeaajugWa8qacqGHsislcaaIXaaaaKqbao aacmaapaqaa8qaceWGAbWdayaalaWdbiabgkHiTiqadQfapaGbaSaa lmaaBaaajuaGbaqcLbmapeGaamiCaiaadkhacaWGPbGaam4Baiaadk haaKqba+aabeaaa8qacaGL7bGaayzFaaaacaGLOaGaayzkaaaaaa@6B6E@ (1.b)

where, g( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaWdbiqadQfapaGbaSaaa8qacaGLOaGa ayzkaaaaaa@3A49@ is the electromagnetic forward modeling operator that generates the displacement field given a discretized model Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGAbWdayaalaaaaa@37A5@ of the subsurface, d obs MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWcpaWaaSbaaKqbagaajugWa8qacaWGVbGaamOyaiaa dohaaKqba+aabeaaaaa@3D05@ is the synthetic wave recorded by the antenna, C dat MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWcpaWaaSbaaKqbagaajugWa8qacaWGKbGaamyyaiaa dshaaKqba+aabeaaaaa@3CD9@ is the data covariance matrix, Z prior MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGAbWdayaalaWcdaWgaaqcfayaaKqzadWdbiaadchacaWG YbGaamyAaiaad+gacaWGYbaajuaGpaqabaaaaa@3EFE@ is the center of the a priori probability density, and C mod MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWcpaWaaSbaaKqbagaajugWa8qacaWGTbGaam4Baiaa dsgaaKqba+aabeaaaaa@3CE0@ is the model covariance matrix. The expected electric permittivity values to be obtained depend on the frequency content of the wavefield used to probe the electrical properties of the material, both its real and its imaginary part. The imaginary part of the electrical permittivity is negligible compared to the real part for frequencies of 10Hz and 100MHz. For this frequency range, the imaginary part is disregarded in materials where the displacement currents prevail with respect to the conduction currents, applicable to resistive materials, but in conductive materials the imaginary part is important and cannot be disregarded.1 In this work we model clay, sand and pyroplastic materials, in which the displacement currents predominate and the Ricker wavelet is defined with a predominant frequency of 100MHz. In this way the imaginary part of the electric permittivity is neglected, taking into account only the real part of the electrical permittivity, that is, only the polarization component within the material is considered and the dielectric losses are disregarded.

Model: clay-sand-clay

This three-layer model has property material as clay loam at the top layer, with a conductivity of σ=9MS/m and an average relative dielectric constant, Er=12, which is 0.97m thick. In the middle layer there is a sand formation, σ=5 MS/m and Er=5, with 0.75 m thickness, this formation makes contact at 1.72m depth with a half space characterized by a clay formation with the same electrical properties of the clay given at the top layer, see Figure 1 below. Below in Table 1, it is shown the distribution of relative electrical permittivity as a function of sample. Note that (tm*0.7) gives the time in nanoseconds. For this work the sampling frequency is fs=1.43 cycles/nanosecond and the maximum frequency of the synthetic generated wavefield and picked-up by the antenna on the surface is f max = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWdamaaBaaabaqcLbmapeGaamyBaiaadggacaWG4baa juaGpaqabaWdbiabg2da9aaa@3D86@ 0.6cycles/nanosecond, which complies with the Nyquist sampling theorem. There is an aliasing lower than 5% in the region of the frequency of 0.6 cycles per nanosecond, therefore it is considered optimal to comply with the sampling theorem of Nyquist, see Figure 2.

Relative electrical permittivity

tm (sample)

  E r =12+0.1*sin( 12*0.7*tm ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWcpaWaaSbaaKqbagaajugWa8qacaWGYbaajuaGpaqa baWdbiabg2da9iaaigdacaaIYaGaey4kaSIaaGimaiaac6cacaaIXa GaaiOkaiaabohacaqGPbGaaeOBamaabmaapaqaa8qacaaIXaGaaGOm aiaacQcacaaIWaGaaiOlaiaaiEdacaGGQaGaamiDaiaad2gaaiaawI cacaGLPaaaaaa@4CB4@

0-16

  E r =5+0.1*sin( 12*0.7*tm ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWcpaWaaSbaaKqbagaajugWa8qacaWGYbaajuaGpaqa baWdbiabg2da9iaaiwdacqGHRaWkcaaIWaGaaiOlaiaaigdacaGGQa Gaae4CaiaabMgacaqGUbWaaeWaa8aabaWdbiaaigdacaaIYaGaaiOk aiaaicdacaGGUaGaaG4naiaacQcacaWG0bGaamyBaaGaayjkaiaawM caaaaa@4BFC@

17-24

  E r =12+0.1*sin( 12*0.7*tm ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWdamaaBaaabaqcLbmapeGaamOCaaqcfa4daeqaa8qa cqGH9aqpcaaIXaGaaGOmaiabgUcaRiaaicdacaGGUaGaaGymaiaacQ cacaqGZbGaaeyAaiaab6gadaqadaWdaeaapeGaaGymaiaaikdacaGG QaGaaGimaiaac6cacaaI3aGaaiOkaiaadshacaWGTbaacaGLOaGaay zkaaaaaa@4C1B@

25-40

Table 1 Relative electrical permittivity as a function of sample

Figure 1 The parametrization of the physical model is shown. Due to the assumed lithology structure, three reflectors are present as follows:
1. The air-clay reflection located at 0ns;
2. The reflection of the clay-sand contact located at 11.2ns and;
3. The deeper reflection of the sand-clay contact located at 16.8ns.

Figure 2 Shows the module of the fast Fourier transform versus the frequency in cycles/nanoseconds for synthetic electromagnetic wave without noise.

Geostatistical inversion

To find the electromagnetic independence, we have that the synthetic wave captured by the radio-receiver is d obs MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWdamaaBaaabaqcLbmapeGaam4BaiaadkgacaWGZbaa juaGpaqabaaaaa@3C6C@ :

d obs =( X[ 0 ] X[ 1 ] : X[ n ] )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWdamaaBaaabaqcLbmapeGaam4BaiaadkgacaWGZbaa juaGpaqabaWdbiabg2da9maabmaapaqaauaabeqabeaaaeaafaqabe Gabaaabaqbaeqabiqaaaqaa8qacaWGybWaamWaa8aabaWdbiaaicda aiaawUfacaGLDbaaa8aabaWdbiaadIfadaWadaWdaeaapeGaaGymaa Gaay5waiaaw2faaaaaa8aabaqbaeqabeqaaaqaauaabeqabeaaaeaa faqabeGabaaabaWdbiaacQdaa8aabaWdbiaadIfadaWadaWdaeaape GaamOBaaGaay5waiaaw2faaaaaaaaaaaaaaaaacaGLOaGaayzkaaGa aiiOaaaa@4CE3@ (2)

The synthetic “observed” wave data, at the study site, is approximated by the convolution model:

g( Z )=( Y[ 0 ] Y[ 1 ] : Y[ n ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaWdbiqadQfapaGbaSaaa8qacaGLOaGa ayzkaaGaeyypa0ZaaeWaa8aabaqbaeqabeqaaaqaauaabeqaceaaae aafaqabeGabaaabaWdbiaadMfadaWadaWdaeaapeGaaGimaaGaay5w aiaaw2faaaWdaeaapeGaamywamaadmaapaqaa8qacaaIXaaacaGLBb GaayzxaaaaaaWdaeaafaqabeqabaaabaqbaeqabeqaaaqaauaabeqa ceaaaeaapeGaaiOoaaWdaeaapeGaamywamaadmaapaqaa8qacaWGUb aacaGLBbGaayzxaaaaaaaaaaaaaaaaaiaawIcacaGLPaaaaaa@498E@ (3)

The function to be optimized and that involves the synthetic “observed” wave data is:

S 1 ( Z )= 1 2 { d obs g ( Z ) } T C dat 1 { d obs g( Z ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWcpaWaaSbaaKqbagaajugWa8qacaaIXaaajuaGpaqa baWdbmaabmaapaqaa8qaceWGAbWdayaalaaapeGaayjkaiaawMcaai abg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaamaacmaa paqaa8qacaWGKbWcpaWaaSbaaKqbagaajugWa8qacaWGVbGaamOyai aadohaaKqba+aabeaapeGaeyOeI0Iaam4zaiaacckadaqadaWdaeaa peGabmOwa8aagaWcaaWdbiaawIcacaGLPaaaaiaawUhacaGL9baal8 aadaahaaqcfayabeaajugWa8qacaWGubaaaKqbakaadoeal8aadaqh aaqcfayaaKqzadWdbiaadsgacaWGHbGaamiDaaqcfa4daeaajugWa8 qacqGHsislcaaIXaaaaKqbaoaacmaapaqaa8qacaWGKbWcpaWaaSba aKqbagaajugWa8qacaWGVbGaamOyaiaadohaaKqba+aabeaapeGaey OeI0Iaam4zamaabmaapaqaa8qaceWGAbWdayaalaaapeGaayjkaiaa wMcaaaGaay5Eaiaaw2haaaaa@694C@ (4)

The function to be optimized and related to the prior well information is given by:

S 2 ( Z )= 1 2 {   Z Z previo } T C mod 1 { Z Z previo }  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWcpaWaaSbaaKqbagaajugWa8qacaaIYaaajuaGpaqa baWdbmaabmaapaqaa8qaceWGAbWdayaalaaapeGaayjkaiaawMcaai abg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaamaacmaa paqaa8qacaGGGcGabmOwa8aagaWca8qacqGHsislceWGAbWdayaala WcdaWgaaqcfayaaKqzadWdbiaadchacaWGYbGaamyzaiaadAhacaWG PbGaam4Baaqcfa4daeqaaaWdbiaawUhacaGL9baal8aadaahaaqcfa yabeaajugWa8qacaWGubaaaKqbakaadoeal8aadaqhaaqcfayaaKqz adWdbiaad2gacaWGVbGaamizaaqcfa4daeaajugWa8qacqGHsislca aIXaaaaKqbaoaacmaapaqaa8qaceWGAbWdayaalaWdbiabgkHiTiqa dQfapaGbaSaadaWgaaqaaKqzadWdbiaadchacaWGYbGaamyzaiaadA hacaWGPbGaam4Baaqcfa4daeqaaaWdbiaawUhacaGL9baacaGGGcaa aa@6A87@ (5)

The permittivity distribution within the well, after a size N window average, is

Z np [ k ]= 1 N+1 i=kN/2 k+N/2 Z p [ i ]  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGAbWdamaaBaaabaqcLbmapeGaamOBaiaadchaaKqba+aa beaapeWaamWaa8aabaWdbiaadUgaaiaawUfacaGLDbaacqGH9aqpda WcaaWdaeaapeGaaGymaaWdaeaapeGaamOtaiabgUcaRiaaigdaaaWa aybCaeqapaqaaaqaaaqaa8qacqGHris5lmaaDaaajuaGbaqcLbmaca WGPbGaeyypa0Jaam4AaiabgkHiTiaad6eacaGGVaGaaGOmaaqcfaya aKqzadGaam4AaiabgUcaRiaad6eacaGGVaGaaGOmaaaaaaqcfaOaam OwaSWdamaaBaaajuaGbaqcLbmapeGaamiCaaqcfa4daeqaa8qadaWa daWdaeaapeGaamyAaaGaay5waiaaw2faaiaacckaaaa@5C5C@ (6)

Where, "k" represents the specific number of the permittivity sample in the well.

For “k” = 1, (7)

Z np [ 1 ]= 1 ( N 2 +1 ) i=1 1+N/2 Z p [ i ]    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGAbWdamaaBaaabaqcLbmapeGaamOBaiaadchaaKqba+aa beaapeWaamWaa8aabaWdbiaaigdaaiaawUfacaGLDbaacqGH9aqpda WcaaWdaeaapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbmaalaaapaqa a8qacaWGobaapaqaa8qacaaIYaaaaiabgUcaRiaaigdaaiaawIcaca GLPaaaaaWaaybCaeqapaqaaaqaaaqaa8qacqGHris5lmaaDaaajuaG baqcLbmacaWGPbGaeyypa0JaaGymaaqcfayaaKqzadGaaGymaiabgU caRiaad6eacaGGVaGaaGOmaaaaaaqcfaOaamOwaSWdamaaBaaajuaG baqcLbmapeGaamiCaaqcfa4daeqaa8qadaWadaWdaeaapeGaamyAaa Gaay5waiaaw2faaiaacckacaGGGcGaaiiOaaaa@5D88@ (7)

Must be taken into account when 1 < k <N/ 2, to what is the Z np [ k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGAbWdamaaBaaabaqcLbmapeGaamOBaiaadchaaKqba+aa beaapeWaamWaa8aabaWdbiaadUgaaiaawUfacaGLDbaaaaa@3E87@ .

For “k” = n,

Z np [ n ]= 1 ( N 2 +1 ) i=nN/2 n Z p [ i ]    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQfal8aadaWgaaqcfayaaKqzadWdbiaad6gacaWGWbaa juaGpaqabaWdbmaadmaapaqaaKqzGeWdbiaad6gaaKqbakaawUfaca GLDbaajugibiabg2da9KqbaoaalaaapaqaaKqzGeWdbiaaigdaaKqb a+aabaWdbmaabmaapaqaa8qadaWcaaWdaeaajugib8qacaWGobaaju aGpaqaaKqzGeWdbiaaikdaaaGaey4kaSIaaGymaaqcfaOaayjkaiaa wMcaaaaadaGfWbqab8aabaaabaaabaqcLbsapeGaeyyeIu+cdaqhaa qcfayaaKqzadGaamyAaiabg2da9iaad6gacqGHsislcaWGobGaai4l aiaaikdaaKqbagaajugWaiaad6gaaaaaaKqzGeGaamOwaKqba+aada WgaaqaaKqzadWdbiaadchaaKqba+aabeaapeWaamWaa8aabaqcLbsa peGaamyAaaqcfaOaay5waiaaw2faaiaacckacaGGGcGaaiiOaaaa@6608@ (8)

Must be taken into account when k>length of Z p N/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGAbWdamaaBaaabaqcLbmapeGaamiCaaqcfa4daeqaa8qa cqGHsislcaWGobGaai4laiaaikdaaaa@3DC2@ , to what is the Z np [ k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGAbWdamaaBaaabaqcLbmapeGaamOBaiaadchaaKqba+aa beaapeWaamWaa8aabaWdbiaadUgaaiaawUfacaGLDbaaaaa@3E87@ .

Calculate the difference of the synthetic electrical permittivity data of well Z p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGAbWdamaaBaaaleaapeGaamiCaaWdaeqaaaaa@3845@ and the average Z np MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQfal8aadaWgaaqcfayaaKqzadWdbiaad6gacaWGWbaa juaGpaqabaaaaa@3C10@ :

L p [ k ]= Z p [ k ] Z np [ k ]   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbWdamaaBaaabaqcLbmapeGaamiCaaqcfa4daeqaa8qa daWadaWdaeaapeGaam4AaaGaay5waiaaw2faaiabg2da9iaadQfapa WaaSbaaeaajugWa8qacaWGWbaajuaGpaqabaWdbmaadmaapaqaa8qa caWGRbaacaGLBbGaayzxaaGaeyOeI0IaamOwaSWdamaaBaaajuaGba qcLbmapeGaamOBaiaadchaaKqba+aabeaapeWaamWaa8aabaWdbiaa dUgaaiaawUfacaGLDbaakiaacckacaGGGcaaaa@5138@ (9)

The covariance matrix for the model is defined as:

C mod ( i,j )= 1 n+1 k=1 n L p [ k ]* L p [ k+ji ]  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWcpaWaaSbaaKqbagaajugWa8qacaWGTbGaam4Baiaa dsgaaKqba+aabeaapeWaaeWaa8aabaWdbiaadMgacaGGSaGaamOAaa GaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qa caWGUbGaey4kaSIaaGymaaaadaGfWbqab8aabaqcLbmapeGaam4Aai abg2da9iaaigdaaKqba+aabaqcLbmapeGaamOBaaqcfa4daeaapeGa eyyeIuoaaiaadYeal8aadaWgaaqcfayaaKqzadWdbiaadchaaKqba+ aabeaapeWaamWaa8aabaWdbiaadUgaaiaawUfacaGLDbaacaGGQaGa amitaSWdamaaBaaajuaGbaqcLbmapeGaamiCaaqcfa4daeqaa8qada WadaWdaeaapeGaam4AaiabgUcaRiaadQgacqGHsislcaWGPbaacaGL BbGaayzxaaGaaiiOaaaa@63E3@ (10)

where n = number of the sample of the synthetic electrical permittivity data of well.

The inverse of the covariance matrix C mod MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWdamaaBaaabaqcLbmapeGaamyBaiaad+gacaWGKbaa juaGpaqabaaaaa@3C46@ is defined as:

C mod 1 ( t, t )= 1 σ mod ( t, t )      MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWcpaWaa0baaKqbagaajugWa8qacaWGTbGaam4Baiaa dsgaaKqba+aabaqcLbmapeGaeyOeI0IaaGymaaaajuaGdaqadaWdae aapeGaamiDaiaacYcaceWG0bWdayaafaaapeGaayjkaiaawMcaaiab g2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaHdpWCpaWaaSbaae aajugWa8qacaWGTbGaam4BaiaadsgaaKqba+aabeaapeWaaeWaa8aa baWdbiaadshacaGGSaGabmiDa8aagaqbaaWdbiaawIcacaGLPaaaaa GaaiiOaiaacckacaGGGcGaaiiOaaaa@568B@ (11)

The inverse of the covariance matrix of electromagnetic wave data  is defined as:

C dat 1 ( t, t )= 1 σ( t, t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWcpaWaa0baaKqbagaajugWa8qacaWGKbGaamyyaiaa dshaaKqba+aabaqcLbmapeGaeyOeI0IaaGymaaaajuaGdaqadaWdae aapeGaamiDaiaacYcaceWG0bWdayaafaaapeGaayjkaiaawMcaaiab g2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaHdpWCdaqadaWdae aapeGaamiDaiaacYcaceWG0bWdayaafaaapeGaayjkaiaawMcaaaaa aaa@4D09@ (12)

In this work, the C dat MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWdamaaBaaabaqcLbmapeGaamizaiaadggacaWG0baa juaGpaqabaaaaa@3C3F@ covariance matrix is diagonal, whose elements of the diagonal is taken equal to one, for this model, it can also be taken as the variance of the synthetic trace that would be recorded by the geophone.

The total function to be optimized is given below:

S( Z )= S 1 ( Z )+ S 2 ( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWaaeWaa8aabaWdbiqadQfapaGbaSaaa8qacaGLOaGa ayzkaaGaeyypa0Jaam4ua8aadaWgaaqaaKqzadWdbiaaigdaaKqba+ aabeaapeWaaeWaa8aabaWdbiqadQfapaGbaSaaa8qacaGLOaGaayzk aaGaey4kaSIaam4uaSWdamaaBaaajuaGbaqcLbmapeGaaGOmaaqcfa 4daeqaa8qadaqadaWdaeaapeGabmOwa8aagaWcaaWdbiaawIcacaGL Paaaaaa@4982@ (13)

Developing equation (4) by indicial product and replacing equations (2) and (3) we have

S 1 ( Z )= 1 2 Δ X T C dat 1 ΔX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWdamaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaa8qa daqadaWdaeaapeGabmOwa8aagaWcaaWdbiaawIcacaGLPaaacqGH9a qpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacqqHuoarcaWG ybWdamaaCaaabeqaaKqzadWdbiaadsfaaaqcfaOaam4qaSWdamaaDa aajuaGbaqcLbmapeGaamizaiaadggacaWG0baajuaGpaqaaKqzadWd biabgkHiTiaaigdaaaqcfaOaeuiLdqKaamiwaaaa@50DA@

   = 1 2 Δ X i e i T . ( C dat 1 ) ls   e l e s T  .Δ X j e j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOaiaacckacqGH9aqpdaWcaaWdaeaapeGaaGym aaWdaeaapeGaaGOmaaaacqqHuoarcaWGybWdamaaBaaabaWdbiaadM gaa8aabeaapeGaamyzaSWdamaaDaaajuaGbaqcLbmapeGaamyAaaqc fa4daeaajugWa8qacaWGubaaaKqbakaac6cadaqadaWdaeaapeGaam 4qaSWdamaaDaaajuaGbaqcLbmapeGaamizaiaadggacaWG0baajuaG paqaaKqzadWdbiabgkHiTiaaigdaaaaajuaGcaGLOaGaayzkaaWdam aaBaaabaqcLbmapeGaamiBaiaadohaaKqba+aabeaapeGaaiiOaiaa dwgal8aadaWgaaqcfayaaKqzadWdbiaadYgaaKqba+aabeaapeGaam yzaSWdamaaDaaajuaGbaqcLbmapeGaam4Caaqcfa4daeaajugWa8qa caWGubaaaKqbakaacckacaGGUaGaeuiLdqKaamiwaSWdamaaBaaaju aGbaqcLbmapeGaamOAaaqcfa4daeqaa8qacaWGLbWcpaWaaSbaaKqb agaajugWa8qacaWGQbaajuaGpaqabaaaaa@70AC@

= 1 2 Δ X i δ il ( C dat 1 ) ls Δ X j δ sj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa cqqHuoarcaWGybWcpaWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpa qabaWdbiabes7aK9aadaWgaaqaaKqzadWdbiaadMgacaWGSbaajuaG paqabaWdbmaabmaapaqaa8qacaWGdbWcpaWaa0baaKqbagaajugWa8 qacaWGKbGaamyyaiaadshaaKqba+aabaqcLbmapeGaeyOeI0IaaGym aaaaaKqbakaawIcacaGLPaaal8aadaWgaaqcfayaaKqzadWdbiaadY gacaWGZbaajuaGpaqabaWdbiabfs5aejaadIfal8aadaWgaaqcfaya aKqzadWdbiaadQgaaKqba+aabeaapeGaeqiTdq2cpaWaaSbaaKqbag aajugWa8qacaWGZbGaamOAaaqcfa4daeqaaaaa@60F7@

    = 1 2 Δ X i ( C dat 1 ) ij Δ X j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOaiaacckacaGGGcGaeyypa0ZaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaGaeuiLdqKaamiwaSWdamaaBaaaju aGbaqcLbmapeGaamyAaaqcfa4daeqaa8qadaqadaWdaeaapeGaam4q aSWdamaaDaaajuaGbaqcLbmapeGaamizaiaadggacaWG0baajuaGpa qaaKqzadWdbiabgkHiTiaaigdaaaaajuaGcaGLOaGaayzkaaWcpaWa aSbaaKqbagaajugWa8qacaWGPbGaamOAaaqcfa4daeqaa8qacqqHuo arcaWGybWdamaaBaaabaqcLbmapeGaamOAaaqcfa4daeqaaaaa@5903@

  = 1 2 i=0 n j=0 n Δ X i ( C dat 1 ) ij Δ X j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOaiabg2da9maalaaapaqaa8qacaaIXaaapaqa a8qacaaIYaaaamaawahabeWdaeaajugWa8qacaWGPbGaeyypa0JaaG imaaqcfa4daeaajugWa8qacaWGUbaajuaGpaqaa8qacqGHris5aaWa aybCaeqapaqaaKqzadWdbiaadQgacqGH9aqpcaaIWaaajuaGpaqaaK qzadWdbiaad6gaaKqba+aabaWdbiabggHiLdaacqqHuoarcaWGybWc paWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpaqabaWdbmaabmaapa qaa8qacaWGdbWcpaWaa0baaKqbagaajugWa8qacaWGKbGaamyyaiaa dshaaKqba+aabaqcLbmapeGaeyOeI0IaaGymaaaaaKqbakaawIcaca GLPaaapaWaaSbaaeaapeGaamyAaKqzadGaamOAaaqcfa4daeqaa8qa cqqHuoarcaWGybWcpaWaaSbaaKqbagaajugWa8qacaWGQbaajuaGpa qabaaaaa@6A0C@

= 1 2 i=0 n j=0 n (X [ i ] Y [ i ]) (X [ j ] Y [  j ]) 1 σ ( i,j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa daGfWbqab8aabaqcLbmapeGaamyAaiabg2da9iaaicdaaKqba+aaba qcLbmapeGaamOBaaqcfa4daeaapeGaeyyeIuoaamaawahabeWdaeaa jugWa8qacaWGQbGaeyypa0JaaGimaaqcfa4daeaajugWa8qacaWGUb aajuaGpaqaa8qacqGHris5aaGaaiikaiaadIfacaGGBbWdamaaBaaa baWdbiaadMgaa8aabeaapeWaaKWma8aabaWdbiabgkHiTiaadMfaca GGBbWdamaaBaaabaWdbiaadMgaa8aabeaaa8qacaGLDbGaayzxaaGa aiykaiaacckacaGGOaGaamiwaiaacUfapaWaaSbaaeaapeGaamOAaa Wdaeqaa8qadaqcJaWdaeaapeGaeyOeI0IaamywaaGaayzxaiaawUfa a8aadaWgaaqaa8qacaGGGcGaamOAaaWdaeqaa8qacaGGDbGaaiykam aalaaapaqaa8qacaaIXaaapaqaa8qacqaHdpWCl8aadaWgaaqcfaya aSWdbmaabmaajuaGpaqaaKqzadWdbiaadMgacaGGSaGaamOAaaqcfa OaayjkaiaawMcaaaWdaeqaaaaaaaa@6E7C@

= 1 2 t'=0 n t=0 n (X[ t ]X[ t ]X[ t ]Y[ t ]X[ t ]Y[ t ]+Y[ t ]Y[ t ] σ( t ,t )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa daGfWbqab8aabaqcLbmapeGaamiDaiaacEcacqGH9aqpcaaIWaaaju aGpaqaaKqzadWdbiaad6gaaKqba+aabaWdbiabggHiLdaadaGfWbqa b8aabaqcLbmapeGaamiDaiabg2da9iaaicdaaKqba+aabaqcLbmape GaamOBaaqcfa4daeaapeGaeyyeIuoaamaalaaapaqaa8qacaGGOaGa amiwamaadmaapaqaa8qaceWG0bWdayaafaaapeGaay5waiaaw2faai aadIfadaWadaWdaeaapeGaamiDaaGaay5waiaaw2faaiabgkHiTiaa dIfadaWadaWdaeaapeGabmiDa8aagaqbaaWdbiaawUfacaGLDbaaca WGzbWaamWaa8aabaWdbiaadshaaiaawUfacaGLDbaacqGHsislcaWG ybWaamWaa8aabaWdbiaadshaaiaawUfacaGLDbaacaWGzbWaamWaa8 aabaWdbiqadshapaGbauaaa8qacaGLBbGaayzxaaGaey4kaSIaamyw amaadmaapaqaa8qaceWG0bWdayaafaaapeGaay5waiaaw2faaiaadM fadaWadaWdaeaapeGaamiDaaGaay5waiaaw2faaaWdaeaapeGaeq4W dm3aaeWaa8aabaWdbiqadshapaGbauaapeGaaiilaiaadshaaiaawI cacaGLPaaaaaGaaiiOaaaa@787A@ (14)

We take the gradient of the function (14), "S1" with respect to Z [ m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGAbWaamWaa8aabaWdbiaad2gaaiaawUfacaGLDbaaaaa@3A86@ and replacing the following equation Y[ t ]= τ=0 n W[ tτ ] ( Z[ τ+1 ]Z[ τ ] ) ( Z[ τ+1 ]+Z[ τ ] )    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGzbWaamWaa8aabaWdbiaadshaaiaawUfacaGLDbaacqGH 9aqpdaGfWbqab8aabaqcLbmapeGaeqiXdqNaeyypa0JaaGimaaqcfa 4daeaajugWa8qacaWGUbaajuaGpaqaa8qacqGHris5aaGaam4vamaa dmaapaqaa8qacaWG0bGaeyOeI0IaeqiXdqhacaGLBbGaayzxaaWaaS aaa8aabaWdbmaabmaapaqaa8qacaWGAbWaamWaa8aabaWdbiabes8a 0jabgUcaRiaaigdaaiaawUfacaGLDbaacqGHsislcaWGAbWaamWaa8 aabaWdbiabes8a0bGaay5waiaaw2faaaGaayjkaiaawMcaaaWdaeaa peWaaeWaa8aabaWdbiaadQfadaWadaWdaeaapeGaeqiXdqNaey4kaS IaaGymaaGaay5waiaaw2faaiabgUcaRiaadQfadaWadaWdaeaapeGa eqiXdqhacaGLBbGaayzxaaaacaGLOaGaayzkaaaaaiaacckacaGGGc aaaa@6A6C@ before of take the gradient of the function (which is the convolution of the source wavelet with the synthetic electrical permittivity data which you want to find) is:

S 1 ( Z ) Z[ m ] =  1 2   t =0 n t=0 n τ=0 n x[ t ]W[ tτ ] σ ( t ,t ) { ( δ m,τ+1 δ m,τ ) ( Z[ τ+1 ]Z[ τ ] ) 1 ( Z[ τ+1 ]Z[ τ ] ) ( Z[ τ+1 ]+Z[ τ ] ) 2 ( δ m,τ+1 + δ m,τ )} 1 2 t =0 n t=0 n τ'=0 n X[ t ]W[ t τ ] σ 2  ( t ,t ) { ( δ m, τ +1 δ m, τ ) ( Z[ τ +1 ]+Z[ τ ] ) 1 ( Z[ τ +1 ]Z[ τ ] ) ( Z[ τ +1 ]+Z[ τ ] ) 2 ( δ m, τ +1 + δ m, τ ) } + 1 2 t =0 n t=0 n τ =0 n τ=0 n W[ t τ ]W[ tτ ] σ ( t ,t ) {( Z[ τ+1 ]Z[ τ ] ) ( Z[ τ+1 ]+Z[ τ ] ) 1 [( δ m, τ +1 δ m,τ' ) ( Z[ τ +1 ]+Z[ τ ] ) 1 ( Z[ τ +1 ]Z[ τ ] ) ( Z[ τ +1 ]+Z[ τ ] ) 2 ( δ m, τ +1 + δ m, τ )] +( Z[ τ +1 ]Z[ τ ] ) ( Z[ τ +1 ]+Z[ τ ] ) 1 [( δ m,τ+1 δ m,τ ) ( Z[ τ+1 ]Z[ τ ] ) ( Z[ τ+1 ]+Z[ τ ] ) 2 ( δ m,τ+1 + δ m,τ )]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaalaaapaqaa8qacqGHciITcaWGtbWcpaWaaSbaaKqb agaajugWa8qacaaIXaaajuaGpaqabaWdbmaabmaapaqaa8qaceWGAb WdayaalaaapeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaamOwamaa dmaapaqaa8qacaWGTbaacaGLBbGaayzxaaaaaiabg2da9iaacckacq GHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacaGGGcWa aybCaeqapaqaaKqzadWdbiqadshapaGbauaapeGaeyypa0JaaGimaa qcfa4daeaajugWa8qacaWGUbaajuaGpaqaa8qacqGHris5aaWaaybC aeqapaqaaKqzadWdbiaadshacqGH9aqpcaaIWaaajuaGpaqaaKqzad Wdbiaad6gaaKqba+aabaWdbiabggHiLdaadaGfWbqab8aabaqcLbma peGaeqiXdqNaeyypa0JaaGimaaqcfa4daeaajugWa8qacaWGUbaaju aGpaqaa8qacqGHris5aaWaaSaaa8aabaWdbiaadIhadaWadaWdaeaa peGabmiDa8aagaqbaaWdbiaawUfacaGLDbaacaWGxbWaamWaa8aaba WdbiaadshacqGHsislcqaHepaDaiaawUfacaGLDbaaa8aabaWdbiab eo8aZ9aadaahaaqabeaaaaWdbmaabmaapaqaa8qaceWG0bWdayaafa WdbiaacYcacaWG0baacaGLOaGaayzkaaaaamaaceaapaqaa8qadaqa daWdaeaapeGaeqiTdq2damaaBaaabaqcLbmapeGaamyBaiaacYcacq aHepaDjuaGcqGHRaWkcaaIXaaapaqabaWdbiabgkHiTiabes7aKTWd amaaBaaajuaGbaqcLbmapeGaamyBaiaacYcacqaHepaDaKqba+aabe aaa8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadQfadaWadaWdaeaa peGaeqiXdqNaey4kaSIaaGymaaGaay5waiaaw2faaiabgkHiTiaadQ fadaWadaWdaeaapeGaeqiXdqhacaGLBbGaayzxaaaacaGLOaGaayzk aaWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaaGymaaaaaKqbak aawUhaaiabgkHiTmaabmaapaqaa8qacaWGAbWaamWaa8aabaWdbiab es8a0jabgUcaRiaaigdaaiaawUfacaGLDbaacqGHsislcaWGAbWaam Waa8aabaWdbiabes8a0bGaay5waiaaw2faaaGaayjkaiaawMcaamaa bmaapaqaa8qacaWGAbWaamWaa8aabaWdbiabes8a0jabgUcaRiaaig daaiaawUfacaGLDbaacqGHRaWkcaWGAbWaamWaa8aabaWdbiabes8a 0bGaay5waiaaw2faaaGaayjkaiaawMcaaSWdamaaCaaajuaGbeqaaK qzadWdbiabgkHiTiaaikdaaaaajuaGpaqaa8qadaqadaWdaeaapeGa eqiTdq2cpaWaaSbaaKqbagaajugWa8qacaWGTbGaaiilaiabes8a0j abgUcaRiaaigdaaKqba+aabeaapeGaey4kaSIaeqiTdq2cpaWaaSba aKqbagaajugWa8qacaWGTbGaaiilaiabes8a0bqcfa4daeqaaaWdbi aawIcacaGLPaaacaGG9bGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aa baWdbiaaikdaaaWcdaGfWbqcfayab8aabaqcLbmapeGabmiDa8aaga qba8qacqGH9aqpcaaIWaaajuaGpaqaaKqzadWdbiaad6gaaKqba+aa baqcLbmapeGaeyyeIuoaaKqbaoaawahabeWdaeaajugWa8qacaWG0b Gaeyypa0JaaGimaaqcfa4daeaajugWa8qacaWGUbaajuaGpaqaa8qa cqGHris5aaWaaybCaeqapaqaaKqzadWdbiabes8a0jaacEcacqGH9a qpcaaIWaaajuaGpaqaaKqzadWdbiaad6gaaKqba+aabaWdbiabggHi LdaadaWcaaWdaeaapeGaamiwamaadmaapaqaa8qacaWG0baacaGLBb GaayzxaaGaam4vamaadmaapaqaa8qaceWG0bWdayaafaWdbiabgkHi Tiqbes8a09aagaqbaaWdbiaawUfacaGLDbaaa8aabaWdbiabeo8aZn aaCaaabeqaaKqzadGaaGOmaaaajuaGcaGGGcWaaeWaa8aabaWdbiqa dshapaGbauaapeGaaiilaiaadshaaiaawIcacaGLPaaaaaWaaiWaa8 aabaWdbmaabmaapaqaa8qacqaH0oazpaWaaSbaaeaapeGaamyBaiaa cYcacuaHepaDpaGbauaapeGaey4kaSIaaGymaaWdaeqaa8qacqGHsi slcqaH0oazpaWaaSbaaeaapeGaamyBaiaacYcacuaHepaDpaGbauaa aeqaaaWdbiaawIcacaGLPaaadaqadaWdaeaapeGaamOwamaadmaapa qaa8qacuaHepaDpaGbauaapeGaey4kaSIaaGymaaGaay5waiaaw2fa aiabgUcaRiaadQfadaWadaWdaeaapeGafqiXdq3dayaafaaapeGaay 5waiaaw2faaaGaayjkaiaawMcaa8aadaahaaqabeaapeGaeyOeI0Ia aGymaaaacqGHsisldaqadaWdaeaapeGaamOwamaadmaapaqaa8qacu aHepaDpaGbauaapeGaey4kaSIaaGymaaGaay5waiaaw2faaiabgkHi TiaadQfadaWadaWdaeaapeGafqiXdq3dayaafaaapeGaay5waiaaw2 faaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGAbWaamWaa8aabaWd biqbes8a09aagaqba8qacqGHRaWkcaaIXaaacaGLBbGaayzxaaGaey 4kaSIaamOwamaadmaapaqaa8qacuaHepaDpaGbauaaa8qacaGLBbGa ayzxaaaacaGLOaGaayzkaaWcpaWaaWbaaKqbagqabaqcLbmapeGaey OeI0IaaGOmaaaajuaGdaqadaWdaeaapeGaeqiTdq2damaaBaaabaqc LbmapeGaamyBaiaacYcacuaHepaDpaGbauaajuaGpeGaey4kaSIaaG ymaaWdaeqaa8qacqGHRaWkcqaH0oazl8aadaWgaaqcfayaaKqzadWd biaad2gacaGGSaGafqiXdq3dayaafaaajuaGbeaaa8qacaGLOaGaay zkaaaacaGL7bGaayzFaaaabaGaey4kaSYaaSaaa8aabaWdbiaaigda a8aabaWdbiaaikdaaaWaaybCaeqapaqaa8qaceWG0bWdayaafaWdbi abg2da9iaaicdaa8aabaWdbiaad6gaa8aabaWdbiabggHiLdaadaGf Wbqab8aabaWdbiaadshacqGH9aqpcaaIWaaapaqaa8qacaWGUbaapa qaa8qacqGHris5aaWaaybCaeqapaqaa8qacuaHepaDpaGbauaapeGa eyypa0JaaGimaaWdaeaapeGaamOBaaWdaeaapeGaeyyeIuoaamaawa habeWdaeaapeGaeqiXdqNaeyypa0JaaGimaaWdaeaapeGaamOBaaWd aeaapeGaeyyeIuoaamaalaaapaqaa8qacaWGxbWaamWaa8aabaWdbi qadshapaGbauaapeGaeyOeI0IafqiXdq3dayaafaaapeGaay5waiaa w2faaiaadEfadaWadaWdaeaapeGaamiDaiabgkHiTiabes8a0bGaay 5waiaaw2faaaWdaeaapeGaeq4Wdm3damaaCaaabeqaaaaapeWaaeWa a8aabaWdbiqadshapaGbauaapeGaaiilaiaadshaaiaawIcacaGLPa aaaaGaai4Eamaabmaapaqaa8qacaWGAbWaamWaa8aabaWdbiabes8a 0jabgUcaRiaaigdaaiaawUfacaGLDbaacqGHsislcaWGAbWaamWaa8 aabaWdbiabes8a0bGaay5waiaaw2faaaGaayjkaiaawMcaamaabmaa paqaa8qacaWGAbWaamWaa8aabaWdbiabes8a0jabgUcaRiaaigdaai aawUfacaGLDbaacqGHRaWkcaWGAbWaamWaa8aabaWdbiabes8a0bGa ay5waiaaw2faaaGaayjkaiaawMcaaSWdamaaCaaajuaGbeqaaKqzad WdbiabgkHiTiaaigdaaaqcfaOaai4waiaacIcacqaH0oazl8aadaWg aaqcfayaaKqzadWdbiaad2gacaGGSaGafqiXdq3dayaafaWdbiabgU caRiaaigdaaKqba+aabeaapeGaeyOeI0IaeqiTdq2cpaWaaSbaaKqb agaajugWa8qacaWGTbGaaiilaiabes8a0jaacEcaaKqba+aabeaape Gaaiykamaabmaapaqaa8qacaWGAbWaamWaa8aabaWdbiqbes8a09aa gaqba8qacqGHRaWkcaaIXaaacaGLBbGaayzxaaGaey4kaSIaamOwam aadmaapaqaa8qacuaHepaDpaGbauaaa8qacaGLBbGaayzxaaaacaGL OaGaayzkaaWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaaGymaa aajuaGcqGHsisldaqadaWdaeaapeGaamOwamaadmaapaqaa8qacuaH epaDpaGbauaapeGaey4kaSIaaGymaaGaay5waiaaw2faaiabgkHiTi aadQfadaWadaWdaeaapeGafqiXdq3dayaafaaapeGaay5waiaaw2fa aaGaayjkaiaawMcaamaabmaapaqaa8qacaWGAbWaamWaa8aabaWdbi qbes8a09aagaqba8qacqGHRaWkcaaIXaaacaGLBbGaayzxaaGaey4k aSIaamOwamaadmaapaqaa8qacuaHepaDpaGbauaaa8qacaGLBbGaay zxaaaacaGLOaGaayzkaaWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOe I0IaaGOmaaaaaKqba+aabaWdbmaabmaapaqaa8qacqaH0oazpaWaaS baaeaajugWa8qacaWGTbGaaiilaiqbes8a09aagaqbaKqba+qacqGH RaWkcaaIXaaapaqabaWdbiabgUcaRiabes7aK9aadaWgaaqaaKqzad Wdbiaad2gacaGGSaGafqiXdq3dayaafaaajuaGbeaaa8qacaGLOaGa ayzkaaWaaKWia8aabaWdbiabgUcaRmaabmaapaqaa8qacaWGAbWaam Waa8aabaWdbiqbes8a09aagaqba8qacqGHRaWkcaaIXaaacaGLBbGa ayzxaaGaeyOeI0IaamOwamaadmaapaqaa8qacuaHepaDpaGbauaaa8 qacaGLBbGaayzxaaaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadQfa daWadaWdaeaapeGafqiXdq3dayaafaWdbiabgUcaRiaaigdaaiaawU facaGLDbaacqGHRaWkcaWGAbWaamWaa8aabaWdbiqbes8a09aagaqb aaWdbiaawUfacaGLDbaaaiaawIcacaGLPaaal8aadaahaaqcfayabe aajugWa8qacqGHsislcaaIXaaaaaqcfaOaayzxaiaawUfaamaabmaa paqaa8qacqaH0oazl8aadaWgaaqcfayaaKqzadWdbiaad2gacaGGSa GaeqiXdqNaey4kaSIaaGymaaqcfa4daeqaa8qacqGHsislcqaH0oaz l8aadaWgaaqcfayaaKqzadWdbiaad2gacaGGSaGaeqiXdqhajuaGpa qabaaapeGaayjkaiaawMcaaaqaaiabgkHiTmaabmaapaqaa8qacaWG AbWaamWaa8aabaWdbiabes8a0jabgUcaRiaaigdaaiaawUfacaGLDb aacqGHsislcaWGAbWaamWaa8aabaWdbiabes8a0bGaay5waiaaw2fa aaGaayjkaiaawMcaamaabmaapaqaa8qacaWGAbWaamWaa8aabaWdbi abes8a0jabgUcaRiaaigdaaiaawUfacaGLDbaacqGHRaWkcaWGAbWa amWaa8aabaWdbiabes8a0bGaay5waiaaw2faaaGaayjkaiaawMcaaS WdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiaaikdaaaqcfa4aaeWa a8aabaWdbiabes7aKTWdamaaBaaajuaGbaqcLbmapeGaamyBaiaacY cacqaHepaDcqGHRaWkcaaIXaaajuaGpaqabaWdbiabgUcaRiabes7a K9aadaWgaaqaaKqzadWdbiaad2gacaGGSaGaeqiXdqhajuaGpaqaba aapeGaayjkaiaawMcaaiaac2facaGG9baaaaa@7D8A@ (15)

The gradient of the equation (5) is:

S 2 Z[ m ] = 1 2 t=0 n (z[ t ] z P [ t ])( 1 σ mod( m,t ) + 1 σ mod( t,m ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOaIyRaam4ua8aadaWgaaqaaKqzadWd biaaikdaaKqba+aabeaaaeaapeGaeyOaIyRaamOwamaadmaapaqaa8 qacaWGTbaacaGLBbGaayzxaaaaaiabg2da9maalaaapaqaa8qacaaI Xaaapaqaa8qacaaIYaaaamaawahabeWdaeaajugWa8qacaWG0bGaey ypa0JaaGimaaqcfa4daeaajugWa8qacaWGUbaajuaGpaqaa8qacqGH ris5aaGaaiikaiaadQhadaWadaWdaeaapeGaamiDaaGaay5waiaaw2 faaiabgkHiTiaadQhapaWaaSbaaeaajugWa8qacaWGqbaajuaGpaqa baWdbmaadmaapaqaa8qacaWG0baacaGLBbGaayzxaaGaaiykaiaacI cadaWcaaWdaeaapeGaaGymaaWdaeaapeGaeq4Wdm3damaaDaaabaqc LbmapeGaamyBaiaad+gacaWGKbWcdaqadaqcfa4daeaajugWa8qaca WGTbGaaiilaiaadshaaKqbakaawIcacaGLPaaaa8aabaaaaaaapeGa ey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeo8aZ9aadaqhaa qaaKqzadWdbiaad2gacaWGVbGaamizaSWaaeWaaKqba+aabaqcLbma peGaamiDaiaacYcacaWGTbaajuaGcaGLOaGaayzkaaaapaqaaaaaaa WdbiaacMcaaaa@78B3@ (16)

 To optimize the equation (13) the method of the Escalated Conjugate Gradient is used, having that the gradient

 of the equation (13) is the sum of the equations (15) and (16).

Results

To test our computer code bul it up with expressions given above, we used the Ricker source wave function with a predominant frequency of 0.1 cycles/nanosecond, and is shown in Figure 3.The synthetic wave that simulates the wave recorded in the surface for the acquisition system (synthetic electromagnetic wave without noise) is shown in Figure 4, and is obtained from the convolution of the Ricker wave with the relative electrical permittivity of the geological model (Figure 1). In Figure 5 we present both the relative electric permittivity model (perturbation from the initial reference model) of the well, and the one obtained in a second step by means of a moving window average with 2 samples. These models were used to estimate the covariance matrix of the model, through the equations from (6) to (10). The calculated relative electrical permittivity data is made through the optimization method of the scaled conjugate gradient,2 and the permittivity was initialized at a constant value equal to the average of the relative synthetic electrical permittivity data of well. The Figure 6shows the initialization data of the optimization algorithm (light blue), the synthetic data of real permittivity (line dark green, real synthetic data), the wellbore permittivity data averaged with the moving window (line red), and the calculated permittivity data (line dark blue)

Figure 3 Source time function in terms of Ricker pulse, given in nanoseconds.

Figure 4 Synthetic “recorded” wave form (without noise) versus time in nanoseconds.

Figure 5 Relative electric permittivity in the well and its average made with a moving window that uses 2 samples, these are a function of nanosecond time.

Figure 6 Shows the initialization data of the optimization algorithm (light blue), the synthetic data of permittivity of the model (dark green, real synthetic data), the averaged relative electric permittivity of well in a mobile window (red ), and the calculated permittivity data (dark blue) for the synthetic electromagnetic wave without noise, all as a function of nanosecond time.

The initialization data of the optimization algorithm has a constant value of relative permittivity of 11.2, which is observed in Figure 7, and in which the red line shows the well permittivity data averaged with the moving window, and in color dark blue represents the calculated permittivity data for the synthetic electromagnetic wave without noise. When the program iterates, the initial data changes until the calculated data is obtained. In Figure 8 and 9, we show the real and calculated synthetic relative electrical permittivity, respectively, as also is observed for the geological model (Figure 1). Only 5 electric permittivity inversions were calculated and 38 equal to the previous ones were placed continuously (it is a means of parallel layers) to make
Figures 8-16 shown below. The synthetic wave that simulates the wave recorded at the top surface (synthetic electromagnetic wave with noise) is shown in Figure 10, and is obtained from the convolution of the Ricker wave with the relative electrical permittivity of the geological model (Figure 1), plus random Gaussian noise of amplitude 5% of the maximum amplitude of the synthetic wave without noise. For this model the sampling frequency is fs=1.43cycles/nanosecond and the maximum frequency of the synthetic wave (with noise) recorded on the surface is fmax=0.6cycles/nanosecond, which complies with the Nyquist sampling theorem. There is an aliasing lower than 5% in the region of the frequency of 0.6 cycles per nanosecond, therefore it is considered optimal to comply with the sampling theorem of Nyquist, see Figure 11.

The stopping criterion is taken when the gradient of the function target is minor that the number of observations (variables), also can be when:

{ d obs g ( Z ) } T C dat 1 { d obs g( Z ) } N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGadaWdaeaapeGaamizaSWdamaaBaaajuaGbaqcLbmapeGa am4BaiaadkgacaWGZbaajuaGpaqabaWdbiabgkHiTiaadEgacaGGGc WaaeWaa8aabaWdbiqadQfapaGbaSaaa8qacaGLOaGaayzkaaaacaGL 7bGaayzFaaWcpaWaaWbaaKqbagqabaqcLbmapeGaamivaaaajuaGca WGdbWcpaWaa0baaKqbagaajugWa8qacaWGKbGaamyyaiaadshaaKqb a+aabaqcLbmapeGaeyOeI0IaaGymaaaajuaGdaGadaWdaeaapeGaam izaSWdamaaBaaajuaGbaqcLbmapeGaam4BaiaadkgacaWGZbaajuaG paqabaWdbiabgkHiTiaadEgadaqadaWdaeaapeGabmOwa8aagaWcaa WdbiaawIcacaGLPaaaaiaawUhacaGL9baacaGGGcGaeyizImQaamOt aaaa@632E@ (17)

Where N is the number of observations.

Figure 7 Shows the calculated permittivity data (dark blue line) for the synthetic electromagnetic wave without noise, real synthetic permittivity (dark green line) and average permittivity (the initialization data of the optimization algorithm; red line). The scale of the vertical axis is in logarithmic.

Figure 8 It shows the real synthetic permittivity, the left vertical axis must be multiplied by 0.7 for that of the scale in nanoseconds, and the horizontal axis is separated by centimeters.

Figure 9 It shows the calculated permittivity, the left vertical axis must be multiplied by 0.7 for that of the scale in nanoseconds, and the horizontal axis is separated by centimeters. We can see the interfaces between clay-sand at 12 nanosecond and sand-clay at 18 nanosecond.

Figure 10 Shows the synthetic wave recorded by the geophone (with noise) versus time in nanoseconds.

Figure 11 Shows the module of the fast Fourier transform versus the frequency in cycles/nanoseconds for synthetic wave with noise.

Figure 12 Shows the relative electric permittivity of the well and its average made with a mobile window that uses 2 samples, these are a function of nanosecond time. The scale of the vertical axis is in logarithmic.

Figure 13 Shows the initialization data of the optimization algorithm (light blue), the synthetic data of real permittivity (dark green), the electric permittivity data averaged in a moving window (red ), and the calculated permittivity data (dark blue)for the synthetic electromagnetic wave with noise, all as a function of nanosecond time. The scale of the vertical axis is in logarithmic.

Figure 14 Shows the calculated permittivity data (dark blue line) for the synthetic electromagnetic wave with noise, real synthetic permittivity (dark green line) and average permittivity (red line). The scale of the vertical axis is in logarithmic.

Figure 15 It shows the real synthetic permittivity, the left vertical axis must be multiplied by 0.7 for that of the scale in nanoseconds, and the horizontal axis is separated by centimeters.

Figure 16 It shows the calculated permittivity, the left vertical axis must be multiplied by 0.7 for that of the scale in nanoseconds, and the horizontal axis is separated by centimeters. We can see the interfaces between clay-sand and sand-clay at 12 nanosecond and sand-clay at 18.5 nanosecond approximately.

Conclusion

The covariance matrix of the synthetic data is diagonal and its variance was chosen equal to one, while the covariance matrix of the model has a value of 0.5 on its diagonal, the latter being smaller which causes the permittivity calculated for the Synthetic wave with and without noise, fit fairly close to the electric permittivity of the averaged well produced by the moving window (this averaging is the center of the a priori probability density), and give acceptably close to the real synthetic permittivity. It is observed that the scaled conjugate gradient method works well for this type of optimization. It is observed that with this inversion technique the medium can be characterized, and if the complex component of the permittivity is calculated by some mathematical model, the characterization of the medium would be extended for other types of soil and frequencies. The RAM memory of the laptop is 2 GHz, and Intel Core Duo, the run took 170 minutes per trace. Generally speaking, higher performance requires more memory and more running time. In the future, the issue of running time can be further addressed by the distributed parallel algorithm or the GPU implementation.

Acknowledgements

None.

Conflict of interest

The author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Julio, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.